N–H Activation by O₂ via O₂^{.-} in Fe¹(η^{5} -C₅H₅)(η^{6} -C₆Me₅NH₂) and Subsequent Formation of an Amino-acid Zwitterion by Mild Reaction with CO₂

Pascal Michaud and Didier Astruc *

Laboratoire de Chimie des Organométalliques, ERA n° 477, Université de Rennes, 35042 Rennes Cedex, France

The thermally unstable complex Fe¹(cp)(C₆Me₅NH₂), (cp = η^5 -C₅H₅) reacts with 1/4 mol of O₂ at -10 °C in toluene to give Fe¹¹(cp)(η^5 -C₆Me₅NH), the N–H being activated by O₂, consistent with an electron transfer mechanism O₂ \rightarrow O₂·⁻; the latter complex reacts with CO₂ (20 °C, 1 atm) providing Fe⁺(cp)(η^6 -C₆Me₅NHCO₂⁻).

We know that electron-rich neutral organometallic complexes bearing an even-hydrocarbon ligand with alkyl substituents may lose, for example, a benzylic H-atom upon reaction with O_2 .^{1,2} This type of C-H activation has been proposed to proceed by an outer-sphere electron transfer (ET) to O_2 giving the reactive superoxide radical anion O_2 .⁻, equation (1) (cp = η^5 -C₅H₅).

$$Fe^{I}(cp)(\eta^{6}-C_{6}Me_{6}) \xrightarrow{O_{2}} [Fe^{II} (cp)(\eta^{6}-C_{6}Me_{6})]^{+}O_{2}^{\cdot-}$$
$$\xrightarrow{-HO_{2}} Fe^{II}(cp)(\eta^{5}-C_{6}Me_{5}CH_{2}) \quad (1)$$
$$(3)$$

We now report that an N-H bond is specifically activated by O_2 in the new d' 19-electron complex $Fe^{I}(cp)(\eta^{6}-C_6Me_5NH_2)$, (1), and that this H-atom abstraction from NH₂ can be followed by reaction with CO_2 under ambient conditions to give an amino-acid zwitterion.

 $[Fe^+(cp)(\eta^{6}-C_6Me_5NH_2)]$ $[PF_6^-]$, (1)⁺, is easily synthesized by the classical exchange reaction³ between ferrocene and $C_6Me_5NH_2^{4,5}$ (15 h reflux, 60% crude yield, 53% yield of yellow needles after recrystallization from ethanol). Satisfactory elemental analysis and ¹H and ¹³C n.m.r. spectra⁺ indicate that no loss of a methyl group occurred. Upon Na/Hg reduction of (1)⁺ in 1,2-dimethoxyethane (DME) at 20 °C, a transient dark green colour was observed and ferrocene, iron, and $C_6Me_5NH_2$ were formed rapidly, indicating that (1) is not stable under the reaction conditions whereas all other known $Fe^{I}(cp)(C_6R_6)$ complexes are.⁶⁻⁸ A possible mode of decomposition is a shift $\eta^6 \rightarrow \eta^1$ of the ligation of $C_6Me_5NH_2$ to give a

[†] Spectral characteristics of (1)⁺: ¹H n.m.r. (CD₃COCD₃, SiMe₄) δ 4.60 (s, cp, 5H), 5.23 (br, NH₂, 2H), 2.60 (s, CH₃, 6H), 2.53 (s, CH₃, 6H), and 2.50 (s, *p*-CH₃, 3H); {¹H} {¹³C n.m.r. (CD₃CN, SiMe₄) δ 78.6 (cp), 121.2 (C-NH₂), 98.0, 93.5, and 82.0 (C₆ ring), and 17.4, 17.1, and 15.4 p.p.m. (CH₃). I.r. (Nujol) \vee 567, 860 (s), 1650, 2000, 3475, and 3520 cm⁻¹. Mössbauer parameters (20 °C) I.S. = 0.46 mm s⁻¹; Q.S = 2.12 mm s⁻¹.

17-electron species $Fe^{I}(cp)(\eta^{1}-C_{6}Me_{5}NH_{2})(\eta^{1}-DME)$. However (1) appeared to be indefinitely stable when the reduction (complete in 1 h) was carried out at -21 °C; it was characterized as a d⁷ complex by the three g values close to 2 in the e.s.r. spectrum at -196 °C in frozen DME (2.0568, 1.9917, and 1.8460), typical of the orthorhombic distortion in this series.⁹ After removing the DME *in vacuo* at -21 °C, (1) was extracted with cold toluene. This solution was titrated by I₂ and/or O₂. Upon addition of 1/4 mol O₂ at -10 °C, the dark green solution turned light red. Titration by KMnO₄ after hydrolysis shows that H₂O₂ is formed in trace amounts, consistent with equation (2) and dismutation of O₂·-.^{1,2} Alternatively,

$$Fe^{I}(cp)(\eta^{6}-C_{6}Me_{5}NH_{2}) + 1/4 O_{2} \xrightarrow{-21 \ ^{\circ}C} Fe^{II}(cp)(\eta^{5}-C_{6}Me_{5}NH) + 1/2 H_{2}O \quad (2)$$
(1)
(2)

crystallization at -80 °C gave 86% of red crystals of Fe(cp)-(C₆Me₅NH), (2), the H atom abstraction product (Scheme 1). The structure of (2) was established by elemental analysis and ¹H and {¹H}¹³C n.m.r. and i.r. spectroscopy.[‡] The {¹H}¹³C spectrum compares well with that of Fe(cp)(η^{5} -C₆Me₅CH₂), (3), the non co-ordinated cyclic carbon resonating at δ 156.5 p.p.m. [145 p.p.m. in (3)]. Contrary to (3), (2) is nearly insoluble in pentane. Its ionization potential (He I) [larger than that of (3)]¹⁰ and its Mössbauer parameters [close to those of the series Fe⁺(cp)(C₆Me₅NHR) X⁻ (R = H, CO₂⁻)] suggest that (2) has more zwitterionic character than (3), equation (3), *i.e.* the dihedral angle between the exocyclic

$$Fe(cp)(\eta^{5}-C_{6}Me_{5}NH) \longleftrightarrow Fe^{+}(cp)(\eta^{6}-C_{6}Me_{5}NH^{-})$$
(3)

double bond and the cyclohexadienyl plane could be less than 32° , the value found for (3).¹¹

Note that the H-atom abstraction by O_2 is remarkably regiospecific, no C-H activation product being found in the ¹H and {¹H}¹³C n.m.r. spectra of the crude reaction product. Since N-bonded hydrogens are more acidic than C-bonded ones¹² in (1)⁺ [confirmed by the reaction between (1)⁺ and Bu^tOK in tetrahydrofuran (THF) which also gives (2)], this regiospecificity confirms the proposal of an ET mechanism $O_2 \rightarrow O_2^{,-}$ followed by deprotonation of the side chain of the arene by $O_2^{,-}$ in Fe¹(cp) arene complexes. The ET step must indeed be very fast since the redox potential of (1)⁺/(1) is -1.9 V vs. standard calomel electrode (SCE) in aqueous LiCl (0.1 M) and -1.72 V/SCE in *NN*-dimethylformamide (+ Bu₁⁴N+Br⁻ 0.1 M), over 1 V more negative than that of O_2/O_2 .

Complex (2) reacts rapidly under 1 atm of CO₂ at 20 °C in THF to give a yellow precipitate of the water-soluble zwitterion Fe⁺(cp)(η^{6} -C₆Me₅NHCO₂⁻) (4), Scheme 1, (95% crude yield, 85% of microcrystals after recrystallization from acetone) identified by ¹³C n.m.r. spectroscopy and by its strong absorption at 1640 cm⁻¹ in the i.r. spectrum (Nujol).§ CO₂ cleavage occurs upon acidification to pH 1 by addition of aqueous HPF₆ to a water solution, which precipitates (1)⁺ (90% yield). Whereas (3) reacts with I₂ to give Fe⁺(cp) (C₆Me₅CH₂I)I⁻ or [Fe⁺(cp)(C₆Me₅CH₂⁻)]₂(I⁻)₂,^{2,11} attempts to couple NH moieties by a similar reaction of (2) with I₂ gave instead the electron-transfer and H-atom-abstraction product (1)⁺, equation (4), as the reaction between (1) and I₂ (after metathesis of the counter-anion with HPF₆).

$$Fe^{+}(cp)(C_{6}Me_{5}NH^{-}) + 1/2 I_{2} \longrightarrow Fe^{+}(cp)(C_{6}Me_{5}NH^{+})I^{-}$$

$$\xrightarrow{solvent}_{(H^{+})} Fe^{+}(cp)(C_{6}Me_{5}NH_{2})I^{-} \quad (4)$$

E.s.r. facilities provided by Professor J. H. Ammeter and L. Zoller (Zürich) are gratefully acknowledged. We also thank the CNRS for financial support and the DGRST for a predoctoral grant to P.M.

Received, 23rd December 1981; Com. 1464

References

- 1 D. Astruc, E. Román, J.-R. Hamon, and P. Batail, J. Am. Chem. Soc., 1979, 101, 2240.
- 2 D. Astruc, J.-R. Hamon, E. Román, and P. Michaud, J. Am. Chem. Soc., 1981, 103, 7502.
- 3 A. N. Nesmeyanov, N. A. Vol'kenau, and I. N. Bolesova, Tetrahedron Lett., 1963, 25, 1725.
- 4 The synthesis of [Fe⁺(cp)C₆H₅NH₂)][PF₆⁻] by ligand exchange between ferrocene and aniline (6% yield) was reported by J. F. Helling and W. A. Hendrickson, J. Organomet. Chem., 1979, 168, 87.
- 5 C. Moinet, personal communication.
- 6 Note, however, that $Fe^{I}(cp)(C_{6}H_{6})$ decomposes in THF analogously (A. N. Nesmeyanov, N. A. Vol'kenau, L. S. Shilovstseva, and V. A. Petrakova, J. Organomet. Chem., 1973, 61, 329).
- 7 D. Astruc, J.-R. Hamon, G. Althoff, E. Román, P. Michaud, J.-P. Mariot, F. Varret, and D. Cozak, J. Am. Chem. Soc., 1979, 101, 5445.
- 8 J.-R. Hamon, D. Astruc, and P. Michaud, J. Am. Chem. Soc., 1981, 103, 758.
- 9 M. V. Rajasekharan, S. Giesinski, J. H. Ammeter, N. Ostwald, J.-R. Hamon, P. Michaud, and D. Astruc., J. Am. Chem. Soc., in the press.
- 10 J. C. Green, M. R. Kelly, M. P. Payne, E. A. Seddon, D. Astruc, and J.-R. Hamon, unpublished results.
- 11 J.-R. Hamon, D. Astruc, E. Román, P. Batail, and J. J. Mayerle, J. Am. Chem. Soc., 1981, 103, 2431.
- 12 C. C. Lee, U. S. Gill, and R. G. Sutherland, J. Organomet. Chem., 1981, 206, 89.

[‡] Spectral characteristics of (2): ¹H n.m.r. (C_6D_6 , SiMe₄) δ 3.56 (s, cp, 5H), 5.36 (br, NH, 1H), and 2.03, 1.93, and 1.80 (3s, CH₃, 15H); {¹H} {¹³C} (C_6D_6 , SiMe₄) δ 75.4 (cp), 156.5 (C=NH), 93.1, 82.7, and 69.0 (C_6 ring), and 16.9 and 16.2 p.p.m. (CH₃). I.r. (toluene) $v_{\rm NH}$ 1560 cm⁻¹. U.v. (toluene) λ nm (ϵ 1 mol⁻¹ cm⁻¹) 420 (590), 350 (826), and 330 (934). Mössbauer parameters (20 °C) I.S. = 0.43 mm s⁻¹, Q.S. = 2.06 mm s⁻¹.

[§] Spectral characteristics of (4) (satisfactory elemental analysis was obtained): ¹H n.m.r. (D₂O, TMPS) δ 4.63 (s, cp, 5H) and 2.45 and 2.48 (m, CH₃, 15H); {¹H}¹³C n.m.r. (D₂O, sodium 3-trimethylsilylpropanesulphonate) δ 80.2 (cp), 164.5 (CO₂), 106.9 (CN), 101.3, 101.4, and 101.7 (C₆ ring), and 16.9, 17.9 (*para*), and 19.0 p.p.m. (CH₃). Minute amounts of Fe⁺(cp) (C₆Me₅NH₂)-OH⁻ and of D₂CO₃ are also found in the ¹H and ¹³C n.m.r. spectra. Mössbauer parameters (20 °C) I.S. = 0.46 mm s⁻¹, Q.S. = 2.05 mm s⁻¹.